Tuesday, October 30, 2007

ASSIGNMENT 2

IMPORTANCE OF SMITH CHARTS IN RF SYSTEMS

What's a Smith chart?

What is a Smith chart? It's really just a plot of complex reflection overlaid with an impedance and/or admittance grid referenced to 1-ohm characteristic impedance. That's it! Transmission coefficient, which equals unity plus reflection coefficient, may also be plotted (see below). You can find books and articles describing how a Smith chart is a graphical representation of the transmission line equations and the mathematical reasons for the circles and arcs, but these things don't really matter when you need to get the job done. What matters knows the basics and how to use them, like always.

The Smith chart contains almost all possible impedances, real or imaginary, within one circle. All imaginary impedances from - infinity to + infinity are represented, but only positive real impedances appear on the "classic" Smith chart. Yes, it is possible to go outside the Smith chart "unity" circle, but only with an active device because this implies negative resistance.

One thing you give up when plotting reflection coefficients on a Smith chart is a direct reading of a frequency axis. Typically, plots that are done over any frequency band have markers calling out specific frequencies.

Why use a Smith chart?

Use of the Smith Chart utility has grown steadily over the years and it is still widely used today, not only as a problem solving aid, but as a graphical demonstrator of how many RF parameters behave at one or more frequencies, an alternative to using tabular information. The Smith Chart can be used to represent many parameters including impedances, admittances, reflection coefficients, a Smith chart is the RF engineer's best friend! It's easy to master, and it adds an air of "analog coolness" to presentations, which will impress your friends, if not your dates! A master in the art of Smith-charting can look at a thoroughly messed up VSWR of a component or network, and synthesize two or three simple networks that will impedance-match the circuit in his head!

Reference:

  1. Chris Bowick.RF Circuits design. 1982, Oxford, Boston.
  2. www.wikipedia.org/smithcharts

No comments: